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ABSTRACT 

The evolution problem 0 ~ du/dt + A(t)u(t), u(s) --~ x, where the A(t) are 
nonlinear operators acting in a Banach space, is studied. Evolution operators 
are constructed from the A(t) under various assumptions. Basic properties of 
these evolution operators are established and their relationship to the evolution 
equation is determined. The results obtained extend several known existence 
theorems and provide generalized solutions of the evolution equation in more 
general cases. 

Introduction 

Let X be a Banach space and consider the initial value problem 

t - ~ t  + A(t)u 90,  s _< t -< T 

(1) ~ u ( s )  = x 

for  an  X-valued function u, where,  for each t, A(t)  is a nonlinear (and possibly 

multivalued) operator.  Suppose for the momen t  that  the problem (1) has a unique 

solution on Is, T]  for every x ~ X and s in [0, T] .  Defining the operator  U(t,s) 

by U(t,s)x = u(t), where u(t) is the solution o f  (1), we immediately obtain the 

relations 

(i) U(s,s) = I (the identity operator) ,  and U(t , s )U(s , r )=  U(t ,r)  for 0 < r 

< _ s < t < _ T  
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from the assumed uniqueness of solutions of (1). One also will have that U(t,s)x 
is continuous in t for fixed s and x under most definitions of a "solut ion" of (1). 

Usually there is a stronger continuity present, namely: 

(ii) U(t,s)x is continuous in the pair (t,s) on the triangle 0 < s _< t < T. 

A family of operators U(t, s) satisfying (i) and (ii) is called an evolution operator. 
If  the domain of each U(t, s) is a subset C of X (rather than X), then we will say U 

is an evolution operator on C. If  U arises from (1) as sketched above, we will 

call it the evolution operator for the problem (1) or the evolution operator as- 

sociated with A(t). The main goal of this work is to study various sets of conditions 

on A(t) which are sufficient to guarantee that there is an evolution operator 

associated (perhaps in a generalized sense) with A(t). Our assumptions will restrict 

us to evolution operators U such that there is a number a~ satisfying 

(2) I[ u ( t , s ) x -  u(t,s)yll <__ Yll 
for 0 < s < t < T and x ,y  in the domain of U. 

If  X is a Hilbert space, then one can actually characterize those operators A 

which are independent of t and give rise to evolution operators U satisfying (2). 

(In this case U(t,s) depends only on t - s and so defines a semigroup.) See [20] 

and [11]. Moreover, i fX  is a general Banach space, then the Hille-Yosida Theorem 

(see, e.g., [13], [22]) provides a complete characterization in the linear t-in- 

dependent case. However, no such characterization is known corresponding to 

the case of linear t-dependent A(t). There are numerous sets of sufficient conditions 

assuring the existence of an evolution operator associated with A(t) in the linear 

case. A discussion of results of this type and references may be found in [22, 

ch. XIV]. 
Some results are available for the quasi-autonomous case (i.e., equations of the 

form (3) below) under the assumption that X* is uniformly convex. See [15] and 

[3]. The paper [14] allows a more general t-dependence but requires uniform 

convexity of X* and A(t) is assumed single-valued. See [6], [7] and [17] also. 

Very little is known when X is not restricted and A(t) is nonlinear and t- 

dependent. The case of continuous A(t) is treated in [16]. See [21] also. In this 

work we will give conditions on A(t) guaranteeing the existence of an associated 

evolution operator. These conditions will include as special cases many of those 

used in the above quoted works. The arguments and results generalize those of 

the paper [10] in which the autonomous case was treated. The operator U(t,s) is 
constructed in Section 2 from the A(t) via a product formula and continuity 
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properties of U(t,s) are studied. Section 3 is devoted to the solution of the initial 

value problem (1). It is shown that U(t, s)x is a solution of (1) in the usual sense if 

(1) has such a solution. Otherwise, U(t, s)x should be regarded as a generalized 

solution. Section 4 deals with the convergence of a family Ua(t, s) of evolution 

operators when the corresponding AtS(t) are known to converge, in some sense, 

as fl-~ 0. These results are then used to approximate a given evolution operator 

U(t, s) by means of differentiable evolution operators obtained by solving problems 

which approximate (1). The results of this section generalize those of [5] for the 

case. Section 5 deals with the quasi-autonomous case, i.e., the autonomous 

problem 
du 
-d-{" + Au 9 f( t)  

(3) u(s) = x 

where A is t-independent. The existence theorems of Kato 1-14] are extended to 

any reflexive Banach space. Generalized solutions of (3) are obtained for 

f e  L~([0, T] : X) and arbitrary X by a straightforward extension of the ideas 

of [1]. Section 6 is concerned with the problem 

{-~t + A(t) u~O 

u(O) = u(T) 

The results obtained extend some w~ork of Brezis in [3] concerning the quasi- 

autonomous case in Hilbert space. Section 7 is devoted to a simple application of 

our basic existence theorems to a concrete evolution problem in partialdifferential 

equations. 

1. Preliminaries on accretive sets 

In this section we collect some basic definitions and elementary facts. Many of 

the results are standard and appear in the existing literature. See, e.g. [10], [14], 

[15] and [19]. 
Let X be a real Banach space with the norm II II A subset A of X • x is in the 

class d(co) if for each 2 > 0 such that 2co < 1 and each pair [xi, Yi] ~ A, i = 1, 2, 
we have 

I](x~ + ,~y0 - (x2 + '~Y2)I1 > ( 1 -  ,~o~) I t x~ -  x2[I 

A is called accretive if A e d(0).  If 2 is real, d~ will denote the set (I + 2.4)-1 and 
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Dx = D(Ja)=R(1 + 2A). (D(J~) is the domain of Jx and R(I + hA) is the range of 

I + 2A). 

LEMMA 1.1. Let o9 be real and Aed(09) .  I f  2 >O and 409<1, then the 

following statements hold: 

(i) Jz is a function and for x ,y~Da 

[]Jxx- JxYI] < ( 1  - ~09)-111 x - y[].  

(ii) l f  xe  Ok ~ D(A) we have 

[1Jxx - x [1 < 2(1 - 20)) -1 inf II Y [l 
y e A x  

(iii) I f  09 >= O, n > 1 is an integer and x e D(J~), then 

II J ; x  - ~ 11 ---< n(1 - 209)-~+111J~ - x II 

(iv) I f  x ~ Dx and 2 >= I~ > O, then 

~ -  J~x ~ D, 
# --f-x + 

and 

(1.1) 

Equation (1.1) is called the resolvent identity or equation. A proof of Lemma 1.1 

is given in [10, lemma 1.2]. For 2, A satisfying the conditions of Lemma 1.1, Aa 

will denote the function 2-1(1 - Ja). Concerning A~ we have: 

LEMMA 1.2. Let A ~d(a~), 2 > O, 209 < 1. Then the following statements 

hold: 

(i) I f  x ~ D~ N D~ and 0 < Iz < 2, then 

(1 - 209) II h~x II --< <1 - ~09> II aux II 

(ii) I f  x, y ~ D~ then 

11Axx - A x y  II :< 2-1(1  § (1 - 209)-1) II x - y II 

(iii) Aa e d(09(1 - 209)- 1) 

(iv) I f  x e D a n  D(A), then IIh~xll--<(1-a09)-linf,~xllyl]. 
PROOF. The assertions (ii) and (iv) follow at once from Lemma 1.1 (i) and (ii) 

respectively. To prove (i), we use Lemma 1.1 (iv) and (i) to conclude 
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I}A2xll = 2 -  

p ==_.-~ 

/t 
< 2  

_ # 

2 

EVOLUTION EQUATIONS 

'{Ix - J~xl} <= ~-~(11 ~ - s.x{[ + l [ s r  J2~ 1}) 

L ~ ( 1 - ~ ) - 1 1 1  ~ 11A.x {l + 

- - - I I A . x l l  + 

Rearranging this inequality yields 

implies 

[1 x -- y + p(Axx - Azy) t{ = 

and the proof is complete. 
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~~ 'u(1- ,uog)-II{ A2x 11. 
(i). To obtain (iii), let p > 0. kemma 1.1 (i) 

> 1 + II x - y II - 7 II J r  - Jay [1 

. ((1+ ,+.),., 
= (1 - p~o(X - 209) -1) II~- Y[{, 

The notions in the next definition are introduced and studied in [9]. 

DEFINITION 1.1. 

For x eN  set 

(1.2) 

If  ~ ~ D(A), then 

Let A e d ( a 0  and set c~ = U~>o (No<2<~Dz). 

lAx{ = l i m  HA2x[{. 
24,0 

(1 .3)  D(A)=  { x e ~ :  IAxl < oo }, 

We allow the possibility that lAx{ = oo. Lemma 1.2 (i) then guarantees that 

the limit (1.2) exists if x eN. The set/9(A) is an extension of the domain of A, since 

Lemma 1.2 (iv) shows ] Ax [ < m i f x e D ( A )  n 9 .  If  Dz=X for small positive 2 

and X is reflexive, then D(A)= D(A) and IAxl = inf,.A,I[ Y[{ for x+O(A). T h i s  

is not the case in general. See [9] and [18], In view of Lemma 1.2, we have: 

LEMMA 1.3. Let A e d(co), 9 ~ D(A), ). > 0 and 209 < 1. Then 

(i) {IA~xl{ < ( 1 -  2o9)-11Ax [ for  x e D  x ~ 
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and 

(ii) 
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IAxl <= inf [lyll for x~D(A). 
yeAx 

Israel J. Math., 

The only other fact we need concerning I Axl is: 

LEMMA 1.4. Let xneDz for n = 1,2,.. .  and 0 < 2 < 2  ~ Let x, ~ xo~D~ as 

n ~  or. Then Iaxol =< liminf,_.+lax,}. In particular, if[ Ax, I is bounded, then 

Xo e B(A). 

p~oo~: II A~xo II ~ I/A~ II § 11 a~x~- Axx o II 

< (1 -2co)-llAx,[+,~.-l(1 + (1 - 2~)-'11 x.-xol[ 
where we used Lemma 1.2 (ii) and Lemma 1.3 (i). The result follows upon letting 

n ~ oo and then 2 ~0. 

2. Existence and properties of the evolution operator 

In this section we construct the evolution operator U(t, s) associated with a one 

parameter family A(t) of ~r operators (sets) and establish its main properties. 

Throughout this section T, 09 denote real numbers, T > 0, and A(t) satisfies 

(A.1) A(t)~d(og) for 0 < t < T. 

(A.2) D(A(t)) = / 3  is independent of t. (We choose, e.g., D = D(A(0))). 

(A.3) R ( I + 2 A ( t ) ) D b  f o r 0 < t < T a n d 0 < 2 < 2 0 ,  w h e r e 2 0 > 0  

and 2oCO < 1. 

Let J~(t) = (I + 2A(t)) -1. The t-dependence of A(t) will be restricted by one of 

the following two conditions: 

(C.1) There is a continuous function f :  [0, T] ~ X and a monotone increasing 

function L: [0, ~ )  ~ 1-0, ~ )  such that 

U J~(t)x- J~(~)x II = 2 llf(t)-f(~)ll z(ll ~ II)for 0 < 2 < 20, 

(2.1) 0 < t, z < T and x e/3. 

(C.2) There is a continuous function f :  [13, T] ~ X which is of bounded 

[0, T], and a monotone increasing function L: [0, oo) ~ [0, oo) variation on 

such that 

(2.2) UJ,(t)x- J,(~)x II ~ 2 I l f ( t ) - f ( , )  II L(II x II)(1 + I a(v)x]) 

for 0 < 2 < 20, 0 < t , ,  < T and x e/3. ( f  is of bounded variation on [0, T] if 
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there is a constant V such that , -1  ~,=x I ] f ( t ,+ l ) - f ( t , ) l l  < V whenever 0 < t 1 

<=t2 <=... <=tns T). 
It follows from the conditions (A.1) to (A.3) that for each fixed z, 0 ~ z _< T, 

there is a semigroup S~(t) on/3  associated with A(z). See [10]. The condition 

(C.1) assumes only continuity o f f  and corresponds roughly to the case in which 

A(t) has the form A(0)+  B(t), where B(t)x is well-behaved in x. In particular, 

taking B(t)x to be independent of x, we can treat the quasi-autonomous case in 

adequate generality. See Section 5 below. Condition (C.2) adds the requirement 

that f be of bounded variation, but weakens (2.1) to (2.2). Choosing f ( t )  = tx o 

for some Xo e X, Xo # 0, (C.2) becomes a Lipschitz continuity condition which 

is implied by some assumptions used in the study of linear evolution equations. 

This special case was also treated by Kato in [14] under the additional assumptions 

that X* is uniformly convex and A(t) is single-valued. 

An immediate consequence of either (C.1) or (C.2) is that [)(A(t)) is independent 

of t. More precisely, dividing (2.1) by ;t and letting 2 ,~ 0 we see that 

(2.3) I A(t)xl--< [ A(*)xl + I[f(t) -f(*)I[ L([I x I[), 

while treating (2.2) similarly yields 

(2.4) I A(t)x ] = IA(*)x[ + IIf(0-f(*) I[ L([[ x 1])(1 + I A(*)xJ) 
for 0 =.6 t, z < T and x eb .  We set /3  = D(A(t)) for 0 _< t _< T. 

The main result of this section is the following theorem. 

THEOREM 2.1. Let A(t) satisfy (A.1), (A.2) and (A.3). I f  either (C.1) or (C.2) 

hold, then 

,=, ( (2.5) U(t,s)x = lira I-[J(,_~)/, s + i x 

exists for x e  D and 0 <= s < t <= T. The U(t,s) defined by (2.5)for 0 <= s < t <= T 

and by the identity for 0 <= s = t < T is an evolution operator on D. Moreover, 

(2.6) II U ( t , s ) x -  U(t,s)y]l < e('-~']lx - Ylt 

for 0 < s,t -< T and x , y ~ f ) .  

We use the conventions II{=~ Ti = T/, Ilk+. ~ = �9 xx,=~ T/=  Tk+l(lXk=i Z / ) i f k > j  and 

1-Ik=jT~=identy i f k < j ,  where {T~} is any collection of functions. The proof  

of Theorem 2.1 is based on a technique of [10, appendix to sec. 1]. More precise 

information concerning the continuity properties of U(t,s) is collected in the 
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course of proving Theorem 2.1 and will be stated in Propositions 2.1, 2.2 and 2.3. 

Three lemmas precede the main arguments. 

LEMMA 2.1. Let n >- m > 0 be integers and cqfl be positive numbers satisfying 

+ fl = 1. Then 

(2.7) 

and 

(2.8) 

j = O  

a,,fli_,,(n _ j) < mfl mfl 2 = + + m - n  . 
j = m 

See [10, lemma 1.4] for a proof of Lemma 2.1. 

DEFINITION 2.1. For x e b  let 

M ( x )  = s u p  I A( t )xl .  
O<t<=T 

It follows directly from (2.3) and (2.4) that if either (C.1) or (C.2) hold, then 

M(x)  < oo for every x e b.  

LEMMA 2.2. There exists a constant K depending only on T, 2o and to such 

that i f  x e f ) ,  l > O, 0 < s t < Tfor  i = 1,2,-.., l, 0 < 2 < 2 o, and 2l < T, then 

l 

(2.9) Ili_-lfll dz ( s i )x -x  ]1 < Kl2M(x) .  

PROOF. 

l 

' )tL J (s,)x - 1-I J (s3x 
i = k + l  

l 

<= Z 
k = l  

(1 - 2to)-t +k-12 [ A(sk)x [ <= N 12 M(x)  

where N = max {(1 - 2o)) - i  : 0 =<j < l} and we used Lemma 1.1 (i), Lemma 1.3 (ii) 

and the definition of Aa. If  co < 0, we take K = 1 > N. If  09 > 0, we use the ele- 

mentary estimate 

- ? ) - " < e x p ( . n ?  t =  forn>0,= 0 < ? < 1 =  (1 
\ 1 - ? /  
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to obtain 

(2.10) 
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[ 12co ~ ( To9 ) 
N = (1 - 2o)) -t  =< exp [ ~ ]  =< exp 1 -S2-ooco ' 
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+ 

< 

where 

(2.13) 

(2.14) 

Now (2.14) implies 

b i = Hf(s + j 2 ) - f ( s  + ( j -  1)2)H L(I[ x I1 + KTM(x) )  

and we used Lemma 2.2 to estimate I1 II Setting d / = ( 1 -  2co)-lbi and 

c i = ( 1 -  2co)-1(1 + b/), we have the recursive estimate 

aj ~ c ja i_ l  q- dj. 

al < ( _ ci ao ci dj. 
\ /,=1 j = l  \ i = j + l  

It suffices to treat the case co > 0. Recalling the definition of dj and cj and using 

H ( l + b j ) < e x p  bi < e x p  bi , 
i=j ~=j i=l 

and set K = exp(Tco/(1 - 2oco)). 

Throughout the rest of this paper we will use the following notation 

k 
(2.11) ea,k(s)x = 1-[ Sx(s + i2)x. 

i=1 

When there is no danger of confusion we will write Px,g instead of Px,~(s)x. 

LEMMA 2.3. Let (C.2) hold and x ~D. Then there is a constant C depending 

only on II  11, 20, co and T such that 

(2.12) M(Px.t(s)x) < C 

whenever 0 < 2 < 20, l > 0, 0 < s < T -  12. 

PROOF. Set aj = [ A(s + j2)Px3(s)x [. Since Ax(s + ja)Px,j_ 1 e A(s + j2)Pa,i we 

have, by Lemma 1.3 (i), (ii) and (2.4) 

a1 = t a (  s + J2)Pz.it < fl Aa(s + jZ)Pa.i_ 1 il < (i  - ).og),llA(s + j2)Pz.j_ , ] 

<~ (1 --  20-))--1{1 A(  s -[- (j - 1)2)Pa.j-I [ 

[If(s +j2)  - f ( s  + (j - 1)2)[I L(I[ Pa.i-1 I1)( 1 + ]A(s + (j - 1)2)P~ j_ I [)} 

(1 - 2co)-l(aj-1 + b/(1 + ai_1) ) 
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l 

Next, ao < M(x) and if V is the variation o f f  over [0, T], then (2.13) gives 

1 

~, b, < VL(I 1 x ]l + KTM(x)).  
i=1 

Thus (2.15) provides a bound on av Finally, IA(t)P, As)xl is easily estimated in 

terms of al = I A(s + 12)P~a(s)x I via (2.4). The proof is complete. 

Let f ( t )  be the function introduced in the conditions (C.1) and (C.2) and 

(2.16) p ( r ) = s u p { l [ f ( t ) - f ( z ) [ l : O < t , z < T a n d l t - z  I <r} ,  

i.e., p is the modulus of continuity o f f  on [0, T]. Clearly, p: [0, oo) --. [0, p(T)] is 

nondecreasing, limr-~o p(r) = p(0) = 0, and p is subadditive, i.e., p(r + s) < p(r) 
+ p(s) for r, s > 0. 

PROOF OF THEOREM 2.1. Let x e / )  and 2o > 2 > # > 0. Set aka= II PZ,k(S)X 
--P,,z(s)x H where k , l>O.  We have, for k,/_>-l, aka=[]Jz(s+k2)Pak_ 1 

- Ju(s + / / I ) P . , , _ ,  1[ < II J,(s + k2)Pa.k_  , - J.(s + k2)P.,,_, II + II J . ( s + k 2 ) P . , , _ ,  

--Jp(s+ II~)P. l - 1  [[" Using Lemma 1.1 and the resolvent identity we obtain 

I1 Jx(s + k2)Pz, k_l - J,(s + k2)Pu ,_, [I 

# 
= J . ( s+k2)  (TPz , k_X  +2---- f~J~(s+k2)P. ,k_a)--Ju(s+k2)p. ,_ ,  

1[ It a ~ - ~ a k , l - 1 ]  < (1 --/~09)- [--~-- k- la -  I "~ 

Hence for k, l > 1 we have 

(2.17) aka < ~l,ak- a, l- 1 + fllak,t- 1 + bka 

where 

and 

~1 = ~(1 - / ~ a ~ )  - 1 ,  171 = fl(1 - pco) - 1 ,  ~ = / ~ / 2 ,  p = (2 - ~)12 

(2.18) bk,' = [I J.(s + Ip)Pu.,_ 1 - Ju(s + k2)P u ,-1 1]. 
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It is proved in Appendix 1 that (2.17) implies 

(2.19) 

(m- 1)^n 

amn < 
i = 0  

n-i i(n) 
am_i, 0 -}- m i - m  [ i -- 1 ) ao,n-i ~=m~l/~i tin--1 

+ n-1 ~ (ra-1)^jRj_l ~a I-'1 (~li (Ji)bm-Ln-j 
j = o  i=o  

where I A k = min (1,k), ( ~ ) is the binomial coefficient and m, n > O. It follows 

from Lemma 2.2 that 

t at, o < Kl2M(x) 

(2.20) tao.l < KllzM(x). 

Using (2.19), (2.20) and Lemma 2.1 we deduce 

(2.21) 

a,.,. <__ KM(x){[(n# - m2) 2 + n,u(2 -/2)] t 

. -1 (m-a)^j ( j )  
+ [(n# -- m2) z + m2(2 -- .u)] ~} + Z ]~ f l J - 'd ,  b,,._i,n_j, 

j=o ~=o i 

where K depends only on T, o~ and 4o, while m, n are restricted by m2, n# < T -  s. 

We next obtain estimates on the bkt under assumptions (C.1) and (C.2). If (C.2) 

holds, then (2.2) implies 

bk.t = 11 J,,(s + lp)Pu,,_ i -- J.(s + k2)Puj_ 1 II 

<=  ,llf(s + ; , ) - f ( s  + k2) I[ g(ll II) (1 +]A(s  + k2)Pu,;_i[ ). 

Next, Lemma 2.2 provides a bound on 1] Pu.l-a 1[ and Lemma 2.3 provides one for 

] A(s + k2)P., l_ 11. Therefore there is a K (we use K to denote various constants) 

such that 

(2.22) bk., < KgHf(s + ll.t) - f (s  + k2)[1" 

An estimate of the form (2.22) will also hold under (C.1) instead of (C.2). The 

argument is similar to the above, but requires only Lemma 2.2. It follows that 

under either (C.1) or (C.2) we have a constant K such that 
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1; Z oj-~ i ]Jl ~1 bm-l,n-j 
j = 0  i=0 

< Kp(1 - p o ) ) - "  2~ f l ' - '  ~' p([ (n  - j ) p  - ( m  - i)~ 
1=0 i=0 (2.23) 

K~(I - ~o,)-" [.p(I ,,~ - , . i  [) <__ 

+ X I:  f l ' - ' r  P(IJ~ - i~l) �9 
j=O i=0  

The first inequality in (2.23) employed (2.22) and the definitions of ~ ,  fll and p. 

The second inequality used the subadditivity of p and the estimate 

(m-~)^j ( )  
1; flJ-~W j <1 .  

i=O i , 

Next let (5 > 0 be given. Write 

~, ]~ flJ-'a' p(lj# - ikj) = I 1 + 12 
j = 0  i=O 

where 11 is the sum over indices such that lJ/z - i21 < 3, while I~ is the sum over 

indices satisfying IJ~ - ik] ____ 3. Clearly I1 < np(6), while 

Iz < p(T) 1; flY-'re' b~ 2)2 (J~ -_j 
j=O i=0  

since (jp - i2) 2/(sz >= 1 for indices corresponding to 12. 
Therefore, 

n--1 (m--1),~j /~J--i,vi { j  ] 
Z Z t.,1 ~' l \ i  ]bm- in - j  

y=o i=o 
(2.24) 

, p ( T )  ,, 
< K(1 - Pe))-"nt~[P(] nl~ - m2[) + p((5) -1- --~-- n#t,~ - P)]  

for all 3 > 0. Combining (2.21) and (2.24) we obtain the existence of a K such that 

am, n ~ K{[(n/~ - m2) 2 + n/~(2 - #)]~ 
(2.25) 

+ [ ( . ~  - m~) 2 + m~(~ - ~,)]~ + . ~ p ( [ . ~  - m~[)  + .~p((5) 

n21., 2 
+ - S ( k  - ~) } 
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where a review of the estimates shows K can be taken to depend only on H x II, 

M(x), p(T), o~, 20 and T. We cart choose, e.g., 62 = ~/(2 - #) and read off from 

(2.25) that am,,, as a function of m, n , / t  and 2, tends to zero as [n/~ - m; t l~  0 

and n, m ~ ~ ,  subject to n, m > 1, 0 < n~t, m2 < T - s, and that this limit is 

uniform in s. It follows that 

U(s + z, s)x = lim [ l  J,~m(S + i2,n)x, X ~ D 
m~c~ i = 1  

exists if {2,,) is a sequence such that 0 < m2m < T -  s, m2m ~ z as m ~ ~ and 

that the limit is uniform in s and independent of {2,,}. Since 1--I~'=1 J(t-~)/, 

(s + i ( t - s ) / n )  has ( 1 -  o g ( t - s ) / n )  -~ as a Lipschitz constant on /3, and 

( 1 -  og( t -  s)[n) -~ ~ e '~ as n ~ ~ ,  it follows that the limit defining U(t,s) 

exists for every x ~/3 uniformly on 0 < s < t < T, and that 

II U(t,s)x - U(t,s)yll < e~'(t-s)[I x - Yi[ 

for x, y e/3. This concludes the proof  of the existence of U(t, s) and the estimate 

(2.6). It remains to verify the properties of an evolution operator. 

Let 0 _< r < T, z, t > 0 and r + z + t < T. Choose a sequence {k(n)} of integers 

such that k(n)t [n < z and k(n)t/n ~ z as n ~ ~ .  Then 

k(n) n (n+ k(n)) 

[-[ Jt/~(r + t + it/n) I-[ Jt/n( r + it [n)x = [-[ J,l,(r + it [n)x. 
i = l  i = 1  i = 1  

Now (n + k ( n ) ) ( t / n ) ~  t + z, and the uniform Lipschitz continuity and strong 

convergence of the operators involved allows us to take the limit as n ~ m and 

conclude 

U(r + t + z, r + t)U(r + t, r)x = U(r + t + z, r)x 

for x e D  and r, t, z as above, thus verifying the defining identity for evolution 

operators. 

The continuity of U(t, s) in (t, s) is established in the next propositions. 

PROPOSmON 2.1. Let x E f )  and either (C.1) or (C.2) hold. Let p be given by 

(2.16) and not be identically zero. Then there is a constant K such that 

(2.26) II u( t , s )x  - u(z,s)xl l  < K p ( l t -  z l) 

for  O<_s<_t , z< T. 

PROOF. Let 2 = ( z / m ) ,  # = ( t / n )  in (2.25) and take the limit as n , m ~ o o .  
This yields 
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II v(t,s)x- u(.~,s)~ II ~ K ( I t -  ~1 + p(It-  ~1) + p('~)) 
for a suitable constant K and any 6 > 0. Letting ~5 tend to zero we find 

II v(t,s)x- v(,~,s)x II ~ K(It-.~I + p(lt -  =1)) 
Since p is continuous, subadditive and p(0) = 0, there is a constant e such that 

r < c p(r) unless p =- 0. The result follows at once. 

REMARK. Proposition 2.1 shows that U(t,s)x inherits exactly the continuity 

in t assumed for the Ja(t) if  x e b .  

1%OVOSITION 2.2. Let x ~ D  and either (C.1) or (C.2) hold. Then there is a 

constant K such that 

(2.27) II U(s + z , s ) x -  U(r + ~,r)x II < Kp(lr-  s 1) 

i f O < z a n d O < s , r , s + z , r  = = 

PROOF. Let ak = II P~,k(s)x- e~k(r)~ II Then 

ak = I] Ja(s + k2)Pa,k- l(s)x - Jx(r + k2)P~k_ ~(r)x II 

+ [I Jx(r + k2)Px, k_ l(s)x - Jz(r + k2)Pz.k_ ,(r)x [I 

<- 2Cp(Is - r[) + (1 - 2co)-lak_, 

for a suitable constant C, where the first term was estimated by means of either 

(2.1) or (2.2) in conjunction with Lemma 2.3. Since ao = 0 this implies 

(" ) an<=2 C p ( I s - r l )  ~ ( 1 - 2 c o ) - '  < = 2 n K p ( l s - r [ )  
i = O  

where K = C for co __< 0 and K = C exp (Tco/(1 - 4009)) if co > 0. Substituting 

2 = ~/n and letting n --* o% we obtain the result. 

COROLLARY 2.1. Let(C.1) or (C.2) hold and x eD. Then U(t,s)x is continuous 

in (t, s) on the triangle 0 <_ s <_ t <_ T. 

PROOF. In view of (2.6) it is enough to establish the result for x e / ) .  I f  x eL), 

then f ( z ,  s) = U(s + z, s)x is continuous in z uniformly in s by (2.26) and con- 

tinuous in s uniformly in z by (2.27), and the Corollary follows at once. 

Corollary 2.1 completes the proof of Theorem 2.1. We conclude this section 

with some remarks concerning the case (C.2) and the rate at which Px,k converges 

to U(t,s). First we note that Proposition 2.1 can be strengthened if (C.2) holds. 
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PROPOSITION 2.3. Let (C.2) hold and xe f ) .  Then there exists a constant C 

such that 

(2.28) II U(t,s)x - U(z,s)xll < C l t -  z I . 

f o r O < s < t , , < T .  

PROOF. Assume t > ,  and let n and m be the greatest integers in t/2 and z/2 

respectively, where 0 < 2 < 2o. According to Lemma 2.2 we have 

Lemma 2.3 provides a bound on M(P~,m), so the result follows upon letting 2 tend 

to zero. 

PROPOSITION 2.4. Let (C.2) hold. Then U(t,s):fk~E) for 0 < s < t<T. 

PROOF. U(t,s)x = lim,_.~o P~t-s)/,.,(s)x and Lemma 2.3 provides a bound on 

M(P(t_s)/,,,(s)x) for x eD. The result follows at once from Lemma 1.4. 

REMARK 2.1. The requirement that f be of bounded variation in (C.2) is used 

only to prove Lemma 2.3. All our results remain true and have the same proofs 

if one assumes Lemma 2.3, or any condition which implies it, and only continuity 

off .  If  we are willing to give up Proposition 2.3, (C.2) could be changed to require 

only that for each x ~/3 there is a continuous f~, such that 

II - I1 All/x(t) - fx( )I1 
for suitable 2, t, ~, s, k. In particular, our assumptions can be localized. 

PROPOSITION 2.5. Let the assumptions of Theorem 2.1 hold and x eD. Then 

(2.29) ~= 1 

<= K ( t - s )  ( - ~ +  p ( ( t - s ) /m ' ) )  . 

where K depends only on {[ x {[, M(x), p(T), o~, 2 o and T. 

PROOF. Substitute / ~ = ( t - s ) / m ,  2 = ( t - s ) / n  in (2.25) and let n ~  ~ .  

Then take 52 = (t - s) 2 / ~jm to obtain the result. 

REMARK 2.2. The estimate (2.29) can be sharpened in the special case of 

HSlder continuous f ,  i.e. p(r) < const, r ", 0 < a < 1, to 
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- x < g ( t - s )  + ~ 2 ) - ~ "  " 
i = l  m 

3. The evolution equation 

In this section we consider the Cauchy problem 

(3.1) { - ~ - ( t ) +  A(t)u(t)~O 

u ( s )  = x .  

A function u: [s, 7"] ~ X  is called a strong solution of (3.1) on Is, T] if: 

(i) u is continuous on [s, 7"] and u(s) = x, 

(ii) u is absolutely continuous on compact subsets of (s, T), 

(iii) u is differentiable a.e. on (s, T) and satisfies (3.1) a.e. 

The evolution operator U(t, s) we constructed in Section 2 is intimately related 

to the solutions of (3.1). We will prove that if (3.1) has a strong solution u(t), 

then u(t )= U(t,s)x. Furthermore, we will give various conditions under which 

U(t,s)x is a strong solution of (3.1) provided it is differentiable a.e. Finally we 

obtain an existence theorem for strong solutions of (3.1) by noting that in certain 

cases U(t,s)x is differentiable a.e. The conditions (A.1)-(A.3) of Section 2 are 

assumed to hold throughout this section. 

THEOREM' 3.1. Let u(t) be a strong solution of  the initial value problem (3.1) 

on [s, T] .  Let (C.1) or (C.2) hold. Then U(t,s)x = u(t) for  0 <- s <_ t <_ T. 

PROOF. Using the definition of a strong solution of (3.1) and the continuity of 

U(t, s)x, we easily reduce to the case where u is absolutely continuous on Is, 7"] 

and x ~/). For simplicity, 

ue: [O, T] ~ X by 

we also assume s = 0. For each e > 0 we define 

It~el 

Ue( t )  = 1-I JXi ) x 
i=O 

where It~el is the greatest integer in t/e. Then ue(t) is a step function which solves 

the approximate problem 

0 u_~(t)-_ u e ( t - e )  ~-A([t/e]e)u,(t) for t_-> 0 

( u e ( t ) = x  for O > t .  
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More compactly, we have 

~ u~(t) = J ~ ( [ t / e ] O u ~ ( t -  ~) for t > 0 

(3.2) I.u~(t) = x for 0 > t. 

From the definition of us(t) and the proof of Theorem 2.1 it follows 

(3.3) lim [1 u,(t)  - U(t,  O)x II -- 0 

uniformly for 0 < t _< T. Next we set u(t) = x for 0 > t and 

u( t) - u(  t - 0 
gs(t) = - u ' ( t )  + a.e. 

8 

Since u is a strong solution of (3.1) 

(3.4) u(t) = . Is(t)(u(t  - ~) + eg,(t))  

a.e. on [0, T] and, since u is absolutely continuous on [0, T], 

(3.5) lira II g=(s) ll d s  = O. 
s J,0 0 

From (3.2) and (3.3) we have 

II u=( 0 - u(t) I! = II J=(ut/~l~)u=(t - ~) - J=(t)(u(t - ~) + ~ s ( t ) )  II 

< [I J , ( t ) u , ( t -  0 - J ~ ( t ) ( u ( t -  0)II + ~(1 - ~,,)-111 g~(t)II 

+ IJJ~( t )us( t -  e ) -  d~(Et /e]e)u~( t -  e)H 

(1 - ~,o)-1(11 u~(t - o -  u ( t -  ~)ll + ~11 g~(t) II) + ~ g p ( t -  [t/~3e) 
a.e. on [0, T]. Here we used either (C.1) or (C.2) in ccnjurlcticn wjll~ I~rrrra 2. 

Integrating this last inequality over [0, tl  and rearranging we find 

1 ds 

Io I < ~ I lu=(s-O-u(s-~) l lds+(1-~,o)  -~  I l g = ( s ) l J d s + K t p ( e ) .  
= 1 - e c o  o " 

Letting e ~ 0 and using (3.3) and (3.4) gives 

llu(t,o)x-u(t)lj <= Hg(s,O)x-u(s)llds 
o 

for 0 _< t < T, which implies U(t ,O)x = u(t)  for 0 --- t -< T. The proof is complete. 

Next we want to relate (d/clt) U(t,  s)x,  whenever it exists, to A(t )U( t ,  s)x. This is 

done under several different hypotheses. We begin with a ratl~,er tect:nical result. 



74 M.G. CRANDALL AND A. PAZY Israel J. Math., 

THEOREM 3.2. Let A(t)  satisfy the conditions of  Theorem 2.1. Moreover, let : 

(i) A(t)  be a closed subset of  X • X for  0 < t < T. 

and 

(ii) For every to, O < to < T, and [Xo, Yo] cA( to)  there exists a continuous 

function y(t) on some interval [to, t o + 6 ] ,  6 > 0 ,  such that y ( t o ) = Y o  and 

y(t) ~ A(t)x  o for  t o < t < to + 6. 

IJ x ~ D  and the (two-sided) derivative d /d t  U(t ,s)x  exists at some point 

(t, s), 0 < s < t < T, then U(t ,s)x  ~ O(A(t)) and 

d 
O~ -d'{ U(t ,s)x  + A(t)  U(t,s)x.  

PROOF. Let F(x)  = {x* ~ X*: ( x , x* )  = I] x ][ z = [I x* [[2}, where (x ,x*)  denotes 

the value of x*e X* at x ~ X, and 

( y , x ) s  = sup ((y,x*): x* ~ F(x)} = max {(y,x*): x* ~ F(x)}. 

It is known that 
1 

2 ( y , x ) s  = lim 1(]] x + ey l[ z - 11 x II 2) = inf ~(11 x + ey 1[ z - [] x II z) 
elO t>O 

from which it follows that the map [y,x] ~ ( y , x ) ~  is upper semicontinuous in 

the pair [y, x] (and Lipschitz continuous in y for fixed x). Another simple proof is 

given in [10]. It is also known that A ~ d(og) is equivalent to the condition that 

( Y l -  y 2 , x 1 -  X2)s>= --091[Xl- X21[ 2 for each pair [xi, y : ] e A .  See [14] for a 

proof in the case oJ -- 0. Now, let 0 < t o < T, [Xo, Yo] ~ A(to) and [Xo, y(t)] ~ A(t)  

such that y ( t o ) =  Yo and y(t)  is continuonus. By definition of Ja we have 

~.-X(x - Ja(t)x) ~ A(t)  J~(t)x, so 

2 -  a(P~, k_ l(to)z - Pz,k(to)Z ) e A(t  o + k2) Pa,k(to)z 

for every z~/3 and 0 < 2  <20. Since A(to + k2)~ ' ( co )  there exists , l*~F(xo  

- Pa,k(to)Z) such that: 

(y( t o + k2 ) - 2 -1(  P ;.,k_ l -- P;~,k),r/*) >= -- CO [I Xo -- P ;~,k []2 
and since r/* ~ F(x  o - P~.R), this implies 

<y(t o + k,t) + cO(Xo - Pz,k), Xo -- Pa,k>, >= 2-1(11XO -- Pz,k [I 2 

- ( x o -  p~.k-l.,*))_-> 2-'(11 x o -  p~.k II ~ -  I lxo-  p~.~-, II [ Ixo-  p~.~ II) 

(~2)(11 xo - p ~  II 2 -II xo - p ~ - i  II 2) 
for k = 1,2,.. . ,  [t/2]. Summing over k, 1 _< k _< [t/2], we obtain 
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rt/a] 

(3.6) 22 ]~ ( y ( t o  + k2)  + og(x o - Pk,z), Xo -- Pk,,~)s 
k=l  

>-- 11 xo - e ~ . , ~ ,  II 2 - II xo - z  112 

Set fx(r) = ( y ( t o  + k2) + cO(Xo - Pk.~), Xo -- Pk,x)~ for k2 =< z < (k + 1)2. Then 

(3.6) may be restated as 

I[tl;.];. 
(3.7) 2 s~(~) ~ >_--Ilxo- P~,<<,~ I1:- I1~o- zll 2. 

do 

Moreover, the upper semicontinuity of ( , ) ,  and P~.,r.u,z~-" U(to + Z, to) z as 

2 ,~ 0 imply 

lim supra(z) =< (y(t  o + ~) + cO(Xo - U(to + T, to)Z), Xo - U(x  + to, to)Z)s 
~t&o 

where the right-hand side is upper semicontinuous and therefore integrable. 

Thus, letting 2,1, 0 in (3.7) and dividing by t we find 

--t  (Y( to  + z) + o~(xo - U(to + ~, to)z),  xo - U(to + ~, to)z)~ d~ 
(3.8) 

1 (11 o- + II Lifo- > § -'- 2t = \ t / 

for all 4" ~ F ( x o  - z ) ,  where the second inequality is obvious. Now assume the 

right derivative 

D + U(t ,  s )x  I, = ,o = D + U(t ,  to)U(t  o, s )x  1, = ,o 

exists. Let z = U(to, S)X in (3.8) and let t$0 to obtain 

(Yo  + og(Xo - U(to,S)X),  Xo - U(to,  S)X)s > ( - D + U(to,  S)X,~*) 

for every 4" e F(xo  - U(to, s)x) .  In view of the arbitrary choice of [%, Yo] ~ A(to) ,  

it follows that 

(3.9) A(to)  U {IV(to, s)x,  - O+ V(to,  s)x]} ~ ~r 

If  the two-sided derivative d ~dr U ( t , s ) x  i,=,o -- y exists, we have 

(3.10) U(t  o - h , s ) x  = U(to,S)X - hy  + o(h) 

as h ~ 0. Since y = D+ U(to, S)X, (3.9) and (3.10) imply 

xh = dh(to)(U(to - h , s ) x )  = U(to,  S)X + o(h) 

and 

U(to - h, s )x  - Jh(tO) U( t  o - h, s )x  
Yh = h = - y + o(1) 
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as h~,0. But [Xh, yh]~A(to), Xh~  U(to, S)X, y h ~  -- y, and the closedness of 

A(to) then imply [U(to, S), - y] ~ A(to) and the proof is complete. 

REMARK 3.1. The inequality (3.8) is a generalization of a result of [2] for X* 

uniformly convex and A independent of t. This was extended to general X in [10]. 

Here we have used the idea of proof of [18]. 

REMARK 3.2. It is clear that the proof of Theorem 3.2 goes through if one 

only requires that 

lim 1 f o  , o  T [l y(s + z) - Y~ [l d~ = O 

rather than condition (ii) of the theorem. 

The conclusion of Theorem 3.2 can be established without requiring the condi- 

tion (ii) in the following case: 

THEOREM 3.3. Let each A(t) be a closed subset of X x X and x ~ b .  l f (C.1)  

holds or x ~ D  and (C.2) holds, then the assertions of Theorem 3.2 concerning 

U(t,s)x remain true. 

PROOF. Let S,(t) be the semigroup on b generated by A(z), i.e., 

S~(t) = lim I + A(z . 

The existence of S~(t) follows at once from Theorem 2.1 and was first proved in 

[10]. We estimate [1U(T + h,z)x - S~(h)xll in the next lemma. 

LEMMA 3.1. I f  x e D  and (C.1) holds or xs[~  and (C.2) holds, then 

lim [l S~(h)x - U(z + h, )xll - o  
h~0 h 

for  O < z < T .  

PROOF. Let a k = I] PZ,k(Z)X -- J~(z) x I[" Then 

ak = II Ja(~ +k2)P~.k_~X-- J~(z) xll < ]1Jx(z + k)OP,~,k_ 1 -- Jz(OPa,k_,il 

(3.12) 

+ [1Jz(z)P;,,k_ 1 - Jk(z) X [] < 2gp(k2)  + (1 - 2(.O)-lak _ x. 

Here we used (C.1) or Lemma 2.3 together with (C.2). Solving (3.12) gives, since 

a o = 0, 

a. =< K(1 - )xo)-'2 ~ p(2k) < K(1 - 2~o)-"2np(n2). 
k = l  
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Let n = [h/2] as 2~, 0 to obtain 

H u(z  + h,z)x - S,(h)xl] <_ g l h p ( h  ). 

The proof of the lemma is complete. We return to the proof of the theorem. 

Note that the "family"  of operators A~(t)= A(to) for 0 _< t <_ T satisfies the 

assumptions of Theorem 3.2. According to the proof of that theorem, A(to) tA 

{[Sto(t)x,-  D+Sto(t)x]} is in d(o)) if the right derivative exists. By Lemma 3.1 

we have D+Sto(t)zlt= o =D+U(t, to)Z[,=,o provided z e / )  and (C.1) holds or 

z s /3  and (C.2) holds. Set z = U(to, S)X (and recall Prop. 2.4), so that we have 

A(to) U {[Sto(O)z , - D+Sto(t)z l,=o]} 

= A(to) W {[U(to, S)X, - O+U(to, S)X]} ed(o)) .  

The last argument in the proof of Theorem 3.3 can now be repeated here, and the 

proof is complete. 

We conclude this section with an existence theorem providing strong solutions 

of (3.1) and some remarks. 

THEOREM 3.4. Let X be a reflexive Banach space and A(t) be closed Jor each 

t, O < t < T. Let (C.2) hold. Then for every x ~ D  and O < s < T the initial 

value problem (3.1) has a unique solution u(t) given by 

u(t) U(t,s)x lim f• ( I + t - S A (  ~ _ ~ ) ) - t  = = s + k  x. 
n~oo k = t  n 

Moreover, u(t)~ D for s _< t _< T. 

PROOF. Proposition 2.3 shows that U(t,s)x is Lipschitz continuous in t and is 

therefore absolutely continuous. Since X is reflexive, U(t, s)x is differentiable a.e. 

on [s,T]. It follows immediately from Theorem 3.3 that U(t,s)x is a strong 

solution of (3.1) and uniqueness is evident from Theorem 3.1. The proof is 

complete. 

REMARK 3.3. Theorem 3.4 and its proof remain valid if the condition that X 

be reflexive is weakened to the condition that X-valued Lipschitz continuous 

functions of t are differentiable a.e. For example, this is the case for X = l~. 

Theorem 3.4 is a generalization of the results of Kato [14] for the case of 

single-valued A(t), uniformly convex X*, and Ilf(t) - f(z)[1 = It - z I and o = 0. 

We relate our (C.2) to Kato's continuity assumption below. 

LEMMA 3.2. Let A(t) be single-valued and satisfy (A.1) and (A.3) and 

D(A(t)) = D be independent of t. I f  
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(3.13) IlA(t)x-A(~)xll <=lt-~lz([Ixll)(1 + II A(0x II) 

for  x e D and 0 < z, t < T, then 

(3.14) ]lJ~(t)x-S~(~)xll _< i t t -  ~lg,(ll x 11)(1 +lA(t)x I) 
for  x eD,  0 < 1 < 1, 2co < �89 and 0 <= t, z <__ T, where L l ( r )  = 4L(K(r  + 1 ) ) fo r  a 

sui table K.  Moreover,  i f  X *  is uniJormly convex, and R(1 + AA( t ) )=  X f o r  

0 < 1 < 1o, 0 < t <_ T, then (3.14) implies (3.13) with L = L 1. 

PROOF. Assume A(t)  is single-valued and that (3.13) holds. Then, if xe /3 ,  

[I da('c)x - da(t)x I[ = 11 da(t)(l  + 1A(t))Ja('c)x - Ja(t)(I  + AA(z))Ja(z)x [] 

-< (1 - ;to)) -~ II (I  + 2J( t ) )Ja(z)x  - (I  + 2A(z))J~(z)x I[ 

(3.15) 
_< 2 1 1 t -  ~]L(I] s~(~)x 11)(1 + II A(~)J~(~)xl]) 

< 2 1 [ t -  z[L([ISa(z)xll)(1 + ( 1 -  i o~) - ' lA (~)x l ) .  

< 411 t -~ l  L(l! S~(~)x II)(i + I A(~)x l) 

Now let y e D be fixed. Then 

llJ~(~) x -  Yl] = ][J~( z ) x -  Ja(z)(I + 1A(z))y]] 

__<(1- t~o)-111 x - (y + IA(~)y)l[ =< 2(11 x H + [[y[I + t11A(~)Y 1[). 

Since II A(~)y [I is bounded for 0 < z < T by (3.13), II J~(~)xll <= g(II x I! + 1)ifor 
some K, 0 < 1 < 1. Thus (3.13) implies (3.14). On the other hand, (3.14) implies 

[1A2(t)x - Aa(z)x II -- II 1-1(x - Ja(t)x) - 2- , (x  - Ja(z)x)[1 

___ I t -  ,IL,(llxl[)(1 + [A(t)xl). 
If X* is uniformly convex, A(t) e d(co), A(t) is single-valued and R(I  + 2A(t)) = X 

for small 2 > 0, and x e D(A), then Ax(t)x converges weakly to A(t)x as 15 0. 

Moreover II A(t)x I1 = 1 A(t)xl for x e O(A). hence, letting 15 0 above, 

[[ A(t)x  - A(z)x  I1 =< lim inf I1Aa(t)x - Aa(z)x [I < It - z l  zl(ll x II)(1 + [I A(t)x II). 
),,to 

The proof is complete. 

REMARK 3.4. I f  X and X* are uniformly convex, Theorem 3.4 can be strength- 

ened. In this case, it follows from the assumptions of Theorem 3.4 that 

D(A(t))  =/9  for 0 < t < T, and if x e 17) then the set A(t)x  has a unique element 
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A(t)~ such that tl A(t)~ I[ = I a(t)  I �9 The solution u(t) of the initial-value problem 

(3.1) is everywhere differentiable from the right and 

D +u(t) + A(t)~ = 0 s <_ t < T 

u ( s )  = x .  

See also [17]. 

4. Approximation and continuous dependence of evolution operators 

For each/3, 0 </3 < 1, let Aa(t) be a family of d(og) sets satisfying the assump- 

tions of Theorem 2.1 and let UB(t,s) be the corresponding evolution operators. 

Suppose A~(t)~ A~ (in some sense) as /~-* 0. One expects that Ua(t,s) will 

converge to U~ Our first result, Theorem 4.1, shows this is indeed the case 

under certain weak conditions. This theorem extends a result of Brezis and Pazy [5] 

in the t-independent case. Using Theorem 4.1, we show that an evolution operator 

provided by Theorem 2.1 can be written as the limit of C 1 evolution operators 

UB(t,s) obtained by Yosida's type of approximation. We drop the index fl if 

/3 = 0 below, e.g., A~ A(t), U~ U(t,s) etc. 

THEOREM 4.1. Let Aa(t) satisfy the assumptions of Theorem 2.1 uniformly in 

/3, 0 < fl < 1 (i.e., we may take the same 09, 20, T, f,  L for each AB(t)). Let 

Dp = D(Aa(O)), J~(t) = (I + 2AB(t)) - 1 and assume 

(4.1) lim J~(t)x = Jz(t)x for x ~ Q, 0 < 2 < 20, 0 _< t _< T 
#~o 

where Q = (t~l>a_>o/3p)oh, b =/)(A(0)).  Let UB(t,s) be the evolution operator 

on ba associated with A~(t) in the sense of Theorem 2.1. Then 

lim UB(t,s)x -- U(t,s)x 
IJ~o 

for x ~ Q., 0 <_ s < t <_ T, and the limit is uniform in t E Is, T]. 

PROOF. We assume, in the proof, that the operators satisfy (C.2). (The proof 

for (C.1) is the same and we could even allow a mixture of (C.1) and (C.2).) The 

idea of the proof is simple. For each fl, let P~k(S)X be defined as in (2.11). By 

Theorem 2.1, Ua(t,s)x -- limn~o~ P(t-~)/n,~a (S)X for each fl, while limp~ o P~,(s)x 

= P, ~(s)x follows at once from our assumptions. The argument below is thus 

to show that we may exchange the order of limits in the iterated expression 

lim~-.~o lima~o P(~_~/~,.(s)x. 
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Since (C.2) is satisfied uniformly in fl, the proof of Theorem 2.1 and Proposition 

2.5 show 

(4.2) lira II v,(r - Pf,_~>.(s)z II -- 0 
n--* ,1o 

holds for 0 =< fl < 1, z eD B. Moreover, given R > 0, (4.2) holds uniformly on 

any set of Is, t, fl, z] which satisfy 

(4.3) z e/3a, II zll s R, [ A'~(0)z I __< R, 0 -<s _< t _< 7:. 

We shall now show that if xe (na>oba) (~ /3  is fixed then there is a positive 

function flo(2) such that 

{[s, t ,  fl, z]: 0 < s < t < T, 0 < fl < flo(2), z = af(0)x} 

satisfies (4.3) for some R > 0. Indeed, since Jae(0)x --* Ja(0)x and x e D ,  there is an 

R > 0 and a function flo(2) > 0 such that if 0 < it < 2 o and 0 < fl < rio(it), then 

[A"(OV~(O)x I__< [I A'~(O)x [1 S I1 i t- ' (g(0)x- x)ll 
(4.4) 

=< (11A~(O)x II + 1 )~ (1 -  itoco)-'(]A(0)x] + 1)=< R 
and 

(4.5) 

Now 

II s,(0)x I1 z R 

II u ' ( , , s ) x -  u(, ,s)x I] ~ II u'(, , ,)x - u~(,,s)J~(O> ]1 

+ II v,(t, sV~(o)x- ef,_~),,,,~ 11 

+ It pf,_~,~,,,,,(,v~(o)x - pg,_,~,~,,,,,(,)x II 

+ II P'(,_=,,,,,,,(s> - p(,_,,,,,,,,(s), II + II P,,_,,,,,,,,(s).,, - v( t , s )x  II 

Numbering the terms on the right above (1)-(5) in their order of appearance we 

have 

( (4.6) (1) + (3) < e '~176 + 1 - co II J~(O)x - x II <- 3e~ 

for all n large enough and 0 < B < rio(),). Here we used (4.4). Next, given e > 0 

the uniformity of(4.2) as discussed there and (4.4), (4.5) show that there is an no 

such that 

(4.7) (2) + (5) < ~/3 for 0 < fl < flo(2), n >>- no. 
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The remaining term (4) tends to zero as/?--* 0 for fixed n. Thus we proceed as 

follows; given e > 0 choose 2 such that 3e'Ot2R < 5/3. Then pick no such that 

(4.6) and (4.7) are satisfied for n > no and 0 </?  </?0(2). For n = no, we then 

have (1) + (2) + (3) + (5) < (2/3)e provided only that 0 </?  </?0(2). Now there 

is a/71, 0 </31 </?0(2) (depending on t, s, no) such that (4) < e/3 if n = no and 

0 < fl _< fl~. Hence 

11 v,~t,s)x- v(t,s)x II <5 
if 0 </?  </?~. This proves limp_,o Ua(t,s)x = U(t,s)x for fixed t,s, 0 < s < t < T 

and x e Q. To show the limit is uniform in t e Is, T], let 0 < s < t < Tand consider 

II oB(t,s) x -  u(t,s)xll z 11 u~(t,s)x - v,(t,s):~(o)x 11 
+ II d(t,s)Jff~o)x- v~(~,s)J~<o)x II + II v~(~,s)Jff(o) x 

- u"(~,s)4 + llu"(~,s)x- u(~,s)x II +llu(~,s)x- u(t,s)x II 
<_2e~'llJg(O)x-xll + K p ( l t - z  l) + II ua(~,s) x - u(v,s)xll 

where we used Proposition 2.1.We require the fact that K can be taken to be inde- 

pendent of 2,/? provided 0 </? </?0(2) so that (4.4) holds. Then, using (4.4) we have 

II U~( t,s)x - U(t's)xll < 2e~ + K p ( I t -  ~1) + II U"(z,s)x - U(~,s)xll 

if 0 </?  </?0()~). It follows at once that if lim.~o~ /?. = 0, lim._.| = z, then 

lim,.~ o~ UP"(t., s)x = U(z, s)x, completing the proof for x e Q. Since each Urn(t, s) has 

e~'ras a Lipschitz constant, the result for x e Q follows from a limiting procedure, 

and the proof is complete. 

We show next that if A(t) satisfies the conditions of Theorem 2.1, with (A.3 

strengthened to 

(A.4) R(I + 2A(t)) ~ convD for 0 < 2 < ;to, 0 < t < T, 

where conv D is the convex hull of D, then the operators AB(t) = Aa(t) =/?-1 

( I -Jr  satisfy the requirements of Theorem 4,1. We will see that U~(t,s)x is a 

continuously differentiable function of t for x e/3 in this case, so it will follow that 

U(t, s) is the limit of C x evolution operators. 

LEMMA 4.1. Let A(t) satisfy (A.1), (A.2), (A.4) and satisfy (C.2) (respectively, 

C.1). Then AB(t)~ ~r -/?e))  -1) for 0 </?  < ;t o. Moreover, the restriction of 

AtJ(t ) to C = convD satisfies (C.2) (respectively (C.1)) uniformly in/?, 0 </?  < ;to, 

and 
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R(I + ;tAa(t)lc) D C 

if 0 < fl < ;t o, 0 < it, ;too(1 - rico)- 1 < 1. 

PROOF. Lemma 1.2 (iii) shows Ap(t) G ~r - fl~o)-l). The assumption (A.4) 

implies D(A~(t))D C, so the restriction of AB(t ) to C certainly satisfies (A.2). 

A slight change in the proof of Lemma 3.2 (and replacing D(A(t)) by D(A(t)) in the 

assumptions), shows that if A(t) satisfies (C.2) so does A~(t) with the same p and a 

slightly modified L. The case (C.1) is dealt with similarly. It remains to show that 

given x G C the equation y + 2AB(t)y = x has a solution y~  C for 0 < ;t and 

2o9(1 - flco) -1 < 1. This last equation is equivalent to y = ~x(Y), where 

O~(Y) = ~----~x + ~ - ~ S p ( t ) y .  

However, g,x: C ~ C and fix is a strict contraction if 2co(1 - rico) -1 < 1. The proof 

is complete. 

LEMMA 4.2. Let A(t) satisfy the conditions of Lemma 4.1 and let Ua(t,s) 

(respectively U(t,s)) be the evolution operator corresponding to At~(t ) on C 

respectively A(t) on D). Then 

lim UP(t,s)x = U(t, s)x 
#~o 

for every xGD and the limit is uniform in t, for s < t < T. 

PROOF. We verify the conditions of Theorem 4.1 with AP(t) = AB(t)I c. In view 

of Lemma 4.1 we need only show lima~oJ~(t)x = Ja(t)x for x eD, 0 < ;t < ;to, 

where Jza(t) = (I + 2Ap(t))-ix. This is an immediate consequence of the identity 

(4.8) Jaz(t)x = Ja+a(t)x + flAz+o(t)x 

and the continuity of Ja(t)x (and hence of Aa(t)x) in 2 for 0 < it < ;to. Both (4.8) 

and the continuity follow from the resolvent identity (1.1). We verify (4.8). By 

definition, 

Now, 

/3 x Ja+a(t)x + flAa+ts(t)x = Ja+a(t)x + ~ " 

(I + 2Aa(t)) [Jx+p(t)x + flAa+a(t)x ] 

fl X) ~- X 
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by the resolvent identity, and this last equality if equivalent to (4.8) since 

(1 + 2Ap(t)) is one-to-one for 2~(1 - flo~) -1 < 1. The proof is complete. 

Since AB(t)x is continuous in t and is Lipschitz continuous in x (see Lemma 1.2 

and Lemma 4.1) 

{ ~  + A,(t)up(t)=O s < t <<_ T 

u s ( s )  = x 

has a unique classical solution for x ~ C. If  C = X this is well-known, and it 

follows from the results of [-8] in our situation. Theoiem 3.1 implies UP(t,s)x 

=us( t  ), so UB(t,s)x is continuously differentiable in t. Thus, U(t,s)=limaio 
US(t, s) is the strong limit of C 1 evolution operators. 

5. The quasi-autonomous equation 

We call an initial-value problem of the form 

du 
I ~ +Au~ f ( t )  s < - t < T  (5.1) 
L 

u ( s )  = x 

quasi-autonomous. Here A is t-independent and f :  [0, T-] ~ X is single-valued. 

The results of Section 2 and 3 may be applied to the study of (5.1), as the next 

lemma shows. 

]_,EMMA 5.1. Let A~d(co),  f : [ O , T ] ~ X .  Let A ( t ) = A - f ( t ) ,  Jr(t) 
= (I + 2A(t))-l ,  Jr = (I + 2A)- 1, 0 < 2 and 20~ < 1. Then x ~ D(J~(t)) if and 

only if x - ,~f(t) ~ D(Ja). Moreover Ja(t)x = J~(x - ,~f(t)) for x ~ D(J~(t)) and 

(5.2) lI Ja( t )x-  Jx(z)xll <= 2 ( 1 -  ,~co)-lllf(t)- f(z)  [I 

for x e O(Jx(t)) ~ O(J~(z)). 

Pr.OOF. The assertions follow at once from the definitions and the identity 

Jx(t)x = Jx(x - 2f(t)). 

The conditions (A.1), (A.2) are automatically satisfied by A(t)= A - f ( t )  if 

A z zr while (A.3) becomes 

R(I + 2A(t)) = R(I + hA) - ,~f(t) =__ D(A(t)) = D(A) 

or 

(5.3) R ( I + 2 A ) ~ -  ~ "(D(A)+ 2f(t)) 0 < 2  <,~o. 
O<=t~T 



84 M.G. CRANDALL AND A. PAZY Israel J. Math., 

If  f is continuous, then A(t) = A - f ( t )  satisfies (C.1) due to (5.2). If  f is also of 

bounded variation, then A(t) also satisfies (C.2). Finally, it is also clear that A(t) 

satisfies condition (ii) of Theorem 3.2 i f f  is continuous. We have then, as a con- 

sequence of Theorem 2.1, Proposition 2.4, Theorems 3.1, 3.2 and 3.4, the following 

result: 

THEOREM 5.1. Let A 6 d ( c o )  satisfy (5.3), where f :  [0, T] ~ X is continuous. 

Then 

~ - -  X 

n ~ o o  i = 1  n 

exists for  x ~ D(A) and 0 < s < t < T. Moreover, U(t, s) is an evolution operator 

on D(A). 

(ii) I f  x ~ b ( A )  and u is a strong solution of(5.1), then u ( t )=  U(t,s)x. 

(iii) I f  f is of bounded variation, then U(t,s) leaves D(A) invariant and 
U(t,s)x is Lipschitz continuous in t .for x~D(A) .  

(iv) I f  f is of bounded variation, A is closed and X is reflexive, then U(t, s)x 

is a strong solution of (5.1)for  x ~D(A). 

Theorem 5.1 (iv) extends an existence theorem of Kato [15] for quasi-auto- 

nomous equations. See also [3]. If  all the requirements of (iv) do not hold, 

U(t,s)x provides a notion of a weak or generalized solution of (5.1). It turns out 

that by using continuity of U(t,s) as a function of f ~  U([0,  T ] : X )  this notion 

can be extended further. 

LEMMA 5.2. Let g, h : [0, T] ~ X be two continuous functions and A ~ d(co) 

such that (5.3) is satisfied with f = g and f = h. Let U h, Ug be the evolution opera- 

tors associated with A - h(t), A - g(t) respectively. Then 

(5.4) [[Uo(t,s)X--Uh(t,s)x[I < e~ 

for 0 < s <  t <_ T, x ~ D(A). 

PROOF. Setting 

a k = (I + 2(1 - g(s + i2)))- - 1-I (I  + 2(A - h(s + i2)))- 
i = i = 1  

- Jz\;=~l (I + 2(A - h(s + i2)))-1x + ,~h(s + k2) 
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we find that 

and 
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ag =< (1 - 2CO)-l(ak_ 1 + 2 I[ g(s + k2) - h(s + k2)[1) 

an < ~ (1 - 2co)i-n-12 I[ g(s + j 2 ) -  h(s +.i4) 1 I. 
/=1 

Set 2 = (t - s) /n above and let n -+ oo to complete the proof. (The evaluation of 

the limit is elementary.) 

Following Brezis and Benilan [1], we make the following definition: 

DEFINITION 5.1. Let A e d(o9) and g e U([0, T] : X). Assume there is a sequence 

{fn} of continuous functions mapping [0, T] to X such that (5.3) is satisfied 

with f = fn, n = 1, 2,.-- and 

lim I i l  g(z) -In(z)II d~ = 0. (5.5) 
n " +  o o  , 1o 

Let Un(t, s) be the evolution operator associated with A - fn ( t ) .  Then 

(5.6) U(t, s)x = lim Un(t, s)x for x ~ D(A) 
n"*  O0 

is the evolution operator associated with A - g(t). 

The existence of the limit (5.6) under the condition (5.5), as well as the fact that 

U is an evolution operator, follows at once from Lemma 5.2. Results analogous to 

Proposition 2.4, Theorems 3.1, and 3.4 can be established for evolution operators 

defined as above. We record only the following generalization of a result of [1]. 

LEMMA 5.3. Let A ed(oo) ,  g~LI([O,T]:  X)  satisfy the conditions of Def- 

inition 5.1, and let U(t ,s)  be the evolution operator associated with A ( t ) =  A 

- g(t). If, x ~ D(A), [Xo, Yo] ~ A, 0 < s <- r <_ t <_ T a n d  4" ~ F(xo - U(r, s)x), then 

(5.7) (U(r, s)x - U(t, s)x, 4*) 

I' 
< (Yo - g(z) + og(xo - C(z, s)x), x o - C(z, s )x ) f l z .  

PROOF. Let {f,} be the sequence in Definition 5.1 and Un(t,s ) the associated 

evolution operators. The inequality (3.8) may be used here with y(z) = Yo - f ( z )  

to conclude, upon reparametrizing, 

(z - Un(t, r)z, 4*) < (Yo - f,(~) + cO(Xo - U,(z, r)z), x o -- U,(z, r)z)s dz 
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for all z ~ D(A) and 4" ~ F(xo - z). Set z = U(r, s)x and let n ~ oo to obtain the 

result. The passage to the limit is justified since U.(t, r)z ~ U(t, r)z uniformly, 

f . (0  ~ g(z) in D and ( ,  >s is Lipschitz continuous in its first argument as well as 

upper semicontinuous in both arguments. 

6. Periodic solutions 

In this section we are interested in the problem 

f-~t  + A(t)u~O 
(6.1) "u(O) = u(T) 

in which the initial condition u(s) = x is replaced by the "periodicity" condition 

u(O) = u(T). The main result is: 

THEOREM 6.1. Let co < 0  and A( t )~d(o~)  for 0 < t <_ T. Further, let A(t) 

satisfy (A.1) to (A.3) and (C.1), where f is of bounded variation. Let U(t,s) be 

the evolution operator associated with A(t) in the sense of Theorem 2.1. Then 

there is a unique Xo ED such that U(T,O)x o = x o. Moreover, Xoel) .  

Before proving Theorem 6.1, we note that it and Theorem 3.4 imply: 

COROLLARY 6.1. In addition to the conditions of Theorem 6.1, let A(t) be 

closed for each t and let X be reflexive. Then (6.1) has the unique strong solution 

u(t)= U(t,O)xo, where U(T,O)xo = x o. 

Note that if A(t) is defined for all t and periodic of period T, then U(t, O)x o is 

periodic of period T. Corollary 6.1 extends a similar result of [3] concerning the 

quasi-autonomous case in Hilbert space. See also [1]. 

PROOF OF THEOREM 6.1. Since A(t)ed(co), 

Ilv(r,o)x-V( ,O yiI<_e~ forx, y b. 

Since co < 0, e~ 1 and U(T,0) has a unique fixed point xo e b .  Similarly 

(, ( / ) ) '  PT/... = + T A i 
i=1 n 

has (1-cot /n)-"  < 1 as a Lipschitz constant, and has a unique fixed point x. ~/5. 

Now 



Vol. 11, 1972 

(6.2) 

and 

I I x . -  xoll 

or 
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lira Pr/n,.Xo = U(T, O)xo = xo 

= II PT,n.nx.- xoll-<_ II P~,n.nx.-  P~, . .xo II + II P~,n.nxo- xoll 

< 1 - I1 x . -  xo II + II PT,n,nxo - x o II, 

87 

II x . -  x o II :< 1 - t - - -  II PT,n,nxo - x o li, 

so letting n -~ ~ and using (6.2), we have 

(6.3) lim I] x n -  Xo II = 0. 
n ' - *  oo 

In order to show Xo ~/3, it is sufficient (by Lemma 1.4 and (6.3)) to show ] A(T)xn[ 
is bounded. Let 

IT a, = [A (--ff-)PT/n,,X. I 
for 1 <_ l _< n. We have, via Lemma 1.3, 

lT (1 coT)-' A[ IT~p 

<__ {o,, } 
Since x, ~ Xo by (6.3), [I Pr/na-lx, l] is bounded. Thus, for a suitable K, 

( c o T )  - t l - -  + ]l ( l T )  ~[ ( l - l )T~  
a, <= at_ 1 Kuf ~ -j~j . 

This implies, since f is of bounded variation, 

a n < 1 -  ao + K1 n 

for another constant K1. Hence 

(6.4) IA(T)Xn[ < 1 - co [A(0)xnl + KI. 
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But, by (2.3), 

(6.5) [ A(0)x.[ __< IA(T)x,] + K2 

for a constant K 2. Since lA(T)xnl < oo (xn = Prtn,nx~ E D(A(T))), (6.4) and (6.5) 

give 

J A(Z)xnl __< 1 - 1 - C o n s t .  

and it follows that 

lim sup IA(T)x,, 1< oo. 
FI --r CO 

The proof is complete. 

7. An example 

In this section we give a simple example to which the preceding theory applies. 

This example is multivalued but not quasi-autonomous, so the results of [14], 

[15] and [3] do not apply directly. 

Let f~ be a bounded domain in R n with a smooth boundary ~f~ and let 

H"(f~), H~(f~) be the usual Sobolev spaces. Let fl(t) c R • R be a maximal 

monotone set in R • R for each t > 0 (equivalently, fl(t)~ d (0 )  and R(I + 2fl(t)) 

= R for 2 > 0, t > 0). Assume further that D(fl(t)) = D is independent of t and 

(7.1) 0 ~ D(B(t)), 0 ~ fl(t)O for t > 0. 

The continuity condition on fl will be 

(C.3) There is a constant C such that if O~t,z, x ~ D(~(t)) and ye~(t)x, then 

there is a w ~p(z)x such that 

(7.2) ] Y -  w] < C([ t - z l ) (a  + l x l )  

For t > 0 we define ~(t) = L2(I'~) • L2(f~) by 

(7.3) /~(t) = ([u, v]: u, v ~ LZ(f~) and v(x) ~ fl(t)u(x)a.e.}. 

Clearly/~(t) is maximal monotone in L2(f~) • L2(f~) (equivalently,/~(t) ~ d (0 )  and 

R(1 + 2/~(t)) = L2(f~) for 2 > 0, t > 0) and D(fl(t)) is independent of t. According 

to (7.1) we have 

(7.4) 0 ~ fl(t)0 for t > 0. 

THEOREM 7.1. Let Uo(X)en2(f~)Nn~(O) &D(p(t)), and (7.1), (C.3) hold. 

Then the initial value problem: 
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f o e ~ - t - - A u + ~ ( t ) u  in ~ x ( 0 ,  oo) 

(7.5) ] u ( t , x ) = O  xeO,q, t>=O 
/ 
"u(O,x) = Uo(X) in fl. 

has a unique solution u: [0, oo) ~ L2(t2) which is Lipschitz continuous on bound- 

ed subsets of [0, oo) and such that u(t) e H2(•) n H~(~) C3 D(fl(t)) for t > 0. 

PP, oor. We will apply Theorem 3.4 in the case X = L2(f0. For A(t) we take 

A ( t ) u  = - Au + B ( t ) .  

with D(A(t)) = n2(fl) n Hlo(fl) n O(fi(t)). Clearly A(t) e d ( 0 )  for t > 0. Moreover 

R(I + 2A(t)) = L2(f0 for ;t > 0. See [4]. This implies that each A(t) is closed in 

L2(f~) • L2(fl). Hence (A.1), (A.2), (A.3) are satisfied by A(t). To use Theorem 3.4 

we show (C.1) is satisfied with f of bounded variation (so (C.2)is satisfied). Let 

h eLZ(fl) and 

ul - 2Aui + 2vi = h v I e fl(t)u 1 

U 2 2Au 2 § ,~.V 2 h vz e ~('~)U 2. 

Forming the difference of these equalities, multiplying by ul - u2 and integrating 

over f~ yields 

- u~ I1 ~ + ~ f o  (~ , (x )  - ~ , ( x ) ) ( . l ( x )  - . ~ ( x ) ) d x  <= o. (7.6) II Ul 

Next, let w: f l ~ R  be such that w(x)efl(t)u2(x) a.e. and 

Iw(x)-v~(x)l <= c l t -  z I (1 + I.~(x)l) a.e. 
The existence of w follows from (C.3). Since fi(t) is monotone in R • R, we have 

(Vl(X) - v2 (x ) ) (u~(x )  - u~(x) )  = (v~(x)  - w ( x )  + w ( x )  - v ~ ( x ) ) ( u l ( x )  - u2(x) )  

>= (w(x )  - v ~ ( x ) ) ( u l ( x )  - u~(x))  

->_ - c I , - r  (1 +l.~(x)l)(u,(x)-u~(x)l 
a.e. in x. Using this in (7.6)~yields 

Ilul-u~ll ~ z ~c l~-~ l  [~ (1 § IUz(X) I)([Ul(X)-- U2(X)I )dX 
(7.7) 

=<_ ~c l , -~1  (.(a)~ + It u~tl)(II u~-  u~ ll). 
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where # is Lebesgue measure. Finally, u2 = Ja(z)h, ut = Ja(t)h by definition and 

Ja(z)O = 0 by (7.4) Hence 

I[ u21[ = It J~(z)h - J~(z)O I[ < I[ h II 

and (7.7) yields 

(7.8) I1 J (t)h - LI  CIt- + II h II) 
Thus (C.1) and (C.2) are satisfied. (Observe that weakening (C.3) by putting 

[I(t) -f(~)l in place of I t - ~] induces the same alteration in (7.8)). The proof 

is complete. 

A simple fl(t) satisfying all our assumptions is 

~ [ -  t,t] if x = 0  

fl(t)x= ~ {t(l + x)} if x > 0  
/ 
L { t ( x - 1 ) }  i f x < O .  

Since A = - A on D(A) = HZ(f~) C~/-/~(f~) belongs to ~ (  -/~o) where Po > 0 

is the smallest eigenvalue of - A, we actually have A(t)e  d (  - /1o)  above. Hence 

we can apply Corollary 6.1 to obtain periodic solutions of the evolution equation. 

Let T >  0 and the assumptions of Theorem 7.1 hold. Then THEOREM 7.2. 

the problem 

t 
' O ~  Ou Ot - Au + fl(t)u x e ~ ,  t > O 

u( t , x )=O xeO~,  t > O  

~u(0, x) = u(T, x) 

has a unique solution u : [0, oo) --,, L2(~), which is Lipschitz continuous on bounded 

subsets of  [0, ~ )  and satisfies 

u(t) ~ H2(~) t3 HI(f~) ~ D(fi(t)) for t >-_ O. 

I f  fl(t) has period T, so does u. 

Appendix 1 

Here we sketch a proof by induction of inequality (2.19) of the text. 

I_EMMA A. Let m and n be nonnegative integers and ak4, bk, l be real numbers 

for  0 <- k <- m, 0 <_ l <_ n. Let ~ and x be real numbers such that 
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(a.1) ak,! < Tak - 1 , t -  1 + t~ak,I- 1 + bk,t 

f o r  0 < k < m, 0 < 1 < n. Then  

(a.2) 
(7) ara'n ----< i=0~ N,n-iy i am_i,O + i=m ? X [rn 1 ao.,-i  

.1  j_, , l j )  
+ Z j=O i=0 ? ~ i bm-i 'n-J"  

PROOF. We use the conventions 0 ~  ( - 1 1 ) = 1  a n d ( J l ) = 0  if j > 0 .  

I f  n = 0 (respectively, m = 0) (a.2) asserts am,o < am,o (respectively, ao,, < ao,,), 

which is correct. I f  m = 1, (a.2) says 

(a.3) a~,, < x 'a l ,  o + ~,xi- 1 a = o,n-i + '~" tcJbl,n-j �9 
i=1 j=O 

As noted above, (a.3) is correct for  n = 0 .  Assume (a.3) holds for  O < n < N .  

Then (a.1) gives 

(a.4) al ,N+ 1 < Tao,N + xal ,~  + bl,N+l. 

Use the induct ion assumption to conclude 

(a.5) 

a l ,N+l  

N 
< yao,  N + tr tcNal,o .~ ~ i--1 : ~1r ao, N_ i 

i=1 

+ 
N-1 . ) 

xJbl ,N-j  + bl ,N+t  
j=O 

which is precisely (a.3) for  n = N + 1. Hence the lemma is true if m = 0 or n = 0 

or m = 1. To  complete  the proof ,  we assume the lemma is true if 0 < n < N and m 

is arbitrary.  It now suffices to show (a.2) holds if m > 2 and n = N + 1. (The 

( i - 1 )  below.) reduct ion to m > 2 eliminates concern over the expressions m - 2  

F r o m  (a.1) we have, for  m > 2, 

am,N+1 < y a m - l m  + rCam,N + bm,N+ 1. 
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Using the induction hypothesis we obtain 

[,+ +~" (:) am N+I ~ Z l~N-i~ i am-(i+l), 0 
i=O 

~m,,~. ( )  ] 
+ r ~ ru-iy~ u a 

i = 0  i m--i,O 

[ , ~  1) 
+ T ~ " " " - -  a o , N - i  

i=m-1 (a.6) 
N m ~-m/ i - 1  ~ ] 

I 
N-1 (m-2)^j  . / i )  

+ Z ~ ~J-~'),'+ I +' j = 0  i=O \ i bm-Ci+ l) 'N-J 

N,~m,,^j (~) ] 
"~ X ~_~ ~, lcJ-i~ i bm_i ,N_ j @ bin,N+ 1 . 

j = o  i=o  

Now one checks each of the three terms in brackets above to verify that it agrees 

with the corresponding term on the right of(a.2) (with n = N + 1). This is straight- 
forward for the first and second terms. The third term may be rewritten as 

N (m-2)^(k- 1)+ 1 ( ) 
bm N+I -[- ~ ~ t~k_I))l k - 1 b m - l , N  + 1 - k  

' l - - 1  

+ 

Note that 

k = l  l = 1  

N (m-~)^(k- n (k ) 
~ lgk_iT l -- 1 bm_l,N+l_k" 

k = l  l = 0  l 

ira - 1) A ( k -  1) k > m 
( m  - 2) A (k  - 1) + 1 = 

m -  1)A(k 1 ) + 1  O<=k<m. 

Now reading off the coefficient of b m - t  (S+~)-k above, case by case, yields 

l = / c k - ' T ' ( ~ )  for l - - k = 0  

lck-'Tt(k--1)=lck-'Tl(~)l if / = 0 ,  k > 0  

+ :1))=+.,<(?)< 
and 

Kk - l?l 

( m  - 1 ) A  (k  - 1) > l > 0 

(~ -11)= xk-I?Z ( kl ) if (m - 2) A (k -1)  + l = l > (m -1)  A (k -1)  

(since then l = k). 
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Each pa i r  of  in tegers  k, I such tha t  0 <_ I _< (m - 1) A k and  0 < k < N falls in to  

exact ly one of  the cases above,  and  the p r o o f  is complete .  
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